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LMR 16—A Self-Calibration Procedure
for a Leaky Network Analyzer

Kimmo Silvonen

Abstract—A thru-match-reflect/line-match-reflect (TMR/LMR)
self-calibration procedure based on the 16-term error model is
shown. The error model takes into account all the leakage paths of
a wafer prober, test fixture, and network analyzer. Simple closed-
form calibration equations are presented. The method is very
robust—zero leakage paths and symmetrical or matched-error
networks can be handled equally well as more general cases. The
algorithm is suitable for nonleaky network analyzers as well. The
calibration is comprised of two-port measurement of the following
standards: T(L), M–M, R–R, R–M, M–R. Two matched loads
(M) are the only standards that have to be known in addition
to the thru (T) or line (L). The reflection coefficient of the two
identical reflection standards (R) is found in addition to the
error parameters as in the normal TMR method. Experimental
measurements with the LMR 16 have been made. All the possible
combinations of five calibration standards for the 16-term error
model are tabulated. The limitations of the super-thru-short-
delay algorithm are defined for the first time.

Index Terms—Calibration, de-embedding, microwave measure-
ment, network analyzer, scattering parameters, wafer probe.

I. INTRODUCTION

NETWORK-ANALYZER self-calibration procedures for
the eight-term error model have been available for over

20 years [1], [2]. A correction procedure [3] is sometimes
used to eliminate the switching errors due to a nonideal
source and load match. This, together with the isolation
measurement, extends the eight-term model essentially to
the 12-term error model. After the introduction of the thru-
match-reflect (TMR) calibration procedure [4] a larger variety
of possible self-calibration techniques have emerged [5]–[7].
Recent research has also been oriented to multiport network
analyzers [8]–[10] and to leaky measurement systems modeled
by the 16-term error model [11]–[15]. The methods in [11],
[14], [15] are iterative numerical procedures. Many times,
however, straightforward calibration equations are preferred
[12], [13]. There should be less computational effort when
closed-form equations are used. In fact, iterative procedures
seldomly occur with the eight- and 12-term error models.
The only solutions for the 16-term self-calibration are thus far
iterative [14], [15], except the one recently published in [16].

While three standards are enough to calibrate the eight-
and 12-term error models, at least five two-port standards
are needed in conjunction with the 16-term (sometimes called
15-term) model [12]. In this paper, a thru-match-reflect/line-
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Fig. 1. The measurement configuration.Sm denotes the measurement
raw-data,Sa being the actual scattering parameters of the standard or DUT,
which are measured through the error adapterE.

match-reflect-based (TMR/LMR) self-calibration procedure is
developed for the 16-term error model. In addition to the
normal measurements of T, M–M, and R–R, two additional
two-port standards are produced by pairs M–R and R–M
(M match, R reflect). If there were no leakage paths,
the last two measurements would be redundant.

The analysis gives simple closed-form equations for the
error terms, for the device-under-test (DUT), and for the
unknown reflection coefficient . If a line (delay) is used
instead of a zero-length thru, the method gives the ratio,
where is of the line ( is the physical length
of the line while is the propagation constant). Eitheror

must be known.

II. THEORY BEHIND THE 16-TERM ERROR MODEL

A. Formulation

The measurement configuration suitable for the eight-
through 16-term error models is shown in Fig. 1. The error
network is considered a four-port, as usual [5], [17]–[20]. The
port numbering and other conventions are according to [11].

Ports 1 and 2 are the real network analyzer ports directly
connected to the DUT denoted by . During the calibration,
the standards are measured instead of the DUT. An ideal vector
network analyzer (VNA) at ports 0 and 3 sees the DUT through
a hypothetical error adapter. Parameters are the raw
data measured by an ideal network analyzer. The error adapter
takes into account most of the nonidealities of the practical
network analyzer, wafer-probing system, or test fixture. It is
also possible to connect a calibrated nonideal network analyzer
to ports 0 and 3 and restrict the error adapter to describe only
the rest of the measurement system (two-tier calibration). In
this case, the error network is a model of the wafer-probing
station.
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and are the incident, reflected, or transmitted volt-
age waves at the input and output terminals. The actual

-parameters of the DUT or of the calibration standard
must fulfill

(1)

Similarly, the measured (uncorrected)-parameters of
the DUT or of the calibration standard are equated to the
voltage waves as follows:

(2)

-parameters and -parameters (transfer or chain
scattering matrix) of the error network are defined by

(3)

(4)

In general, equations between- and -parameters [(5)
and (6)] can be found as shown at the bottom of the page,

where

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

There are an equal number of - and -parameters
both with the 8- and 16-term error models. However, in
the nine- through 15-term error models there can be more
nonzero -parameters than -parameters, making some of
the -parameters linearly dependent on each other. Due to
the complicated transformation in (5) and (6), the number
of -parameters is also dependent on which-parameters
are assumed zero (if any). The difference of the number of
parameters can be as much as two.

Linear equations for the error terms can be developed by
splitting the matrix into four quadrants [17], [18]

(17)

(18)

(19)

(20)

Matrix equation (19) is the basis of the calibration, while
(20) allows the de-embedding of the DUT.

(5)

(6)
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Fig. 2. The effective source and load match in forward (f) and reverse (r)
measurements.

These equations can be used with practically any network
analyzer, test fixture, or wafer-probing system. Equation (19)
produces a set of four linear equations in terms of the 16
error-parameters [12] as follows:

(21a)

(21b)

(21c)

(21d)

B. Effect of Source and Load Match

In the 12-term error model [21] the reverse and forward-
source and load-match terms are defined separately. This is
essential with an imperfect measurement system, because the
switches change the configuration of the network (Fig. 2).

However, the 16-term error model, is an extension of the
8-term model and by itself cannot take the separate forward-
and reverse-load match terms into account. This will decrease
the measurement accuracy especially when highly reflective
devices are measured [22]. If the forward-source match is not
equal to the reverse-load match, or if the forward-load match
is not equal to the reverse-source match [see (22)–(26)], will
correct the error [3], [15]. It can be shown that the equations
are exactly the same as the-parameters solved from the

-parameters in [5] (10). The equations are used both with
the measurement of the calibration standards and with the
measurement of the DUT. The following primed quantities
denote the reverse measurement direction while the unprimed
refer to the forward direction:

(22)

(23)

(24)

(25)

(26)

This method can only be used with four sampler network
analyzers capable of measuring and independently. In
two-tier calibration with the calibrated network analyzer, the
correction is unnecessary.

C. 16-Term De-Embedding Equations

After the error terms are defined, the embedded
-parameters of the DUT are first measured. The

de-embedding can be performed using the following
equations:

(27)

where

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

The resulting equations are simply

(36)

(37)

(38)

(39)

D. Comparison with the Eight-Term
Transmission-Circuit-Unknown (TCX) Algorithm

Equations (21a)–(21d) are used in the transmission-circuit-
unknown (TCX) algorithm [6], [22] without leakage terms.
The quadrants and are all diagonal matrices in the case
of the eight-term error model. If error term is set equal to
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one, will correspond to the parameterin [6] as follows:

(40)

(41)

where and .

E. Restrictions of the Super-Thru-Short-Delay Algorithm

In [17], [18], the super-thru-short-delay algorithm based on
the 16-term error model is presented. In the both articles, it is
assumed that one of the quadrants (e.g.,) can be arbitrarily
chosen. In Speciale and Franzen’s preliminary work [17], it
is admitted that “no formal proof of this invariance has yet
been given.” In [18], it is mentioned that some restrictions are
expected, but nothing other than singularities are ever stated. If

is assumed known, 12 unknowns are left. Three standards
would then possibly be enough for a complete calibration.

Detailed analysis has shown that in its original form, the
super-thru-short-delay method gives correct results only under
the following special conditions.

• A symmetrical and reciprocal DUT is measured with a
measurement system, in which every quadrantis also
symmetrical and reciprocal. Anarbitrary quadrant
can be chosen as follows:

(42)

• Any kind of DUT can be correctly measured if quadrants
are diagonal and symmetrical. This means a symmetri-

cal measurement system with no leakage paths (e.g., a test
fixture and two-tier calibration). has to be diagonal as
follows:

(43)

These conditions can be expressed in an alternative form. The
quadrants must commute with the standards, the DUT, and
each other.

In general, three standards allow the measurement of any
DUT, if . In
practice, these conditions can be encountered only with two-
tier calibrations. In fact, the situation is approximately the
same as the nearly symmetrical case in [23]. Because three
standards instead of two are used, leakage paths other than

and can be included. In [23], inferior results were
achieved using the super-thru-short-delay algorithm for thru-
short-delay and for thru-open-delay standards, but the results
were much better for the thru-short-open combination. The
test fixture model was nonleaky and reciprocal, but slightly
asymmetrical . If more leakage paths are assumed
to be zero, the value of can be solved from the data of three
calibration measurements.

F. Possible Calibration Methods for the 16-Term Error Model

One of the 16 error terms (in this case) is scaled equal
to one, in fact, the other terms are calculated as a function
of the scaling parameter. At first glance, four calibration
measurements seem to give enough equations to solve the
remaining 15 error terms. By numerical simulation it can be
shown that all the 16 sets of 15 equations are singular for any
four standards. The situation does not change even though the
standards would be nonreciprocal and nonsymmetrical. This
means that five two-port calibration measurements are strictly
needed [12]. The only proof of this known to the author is
the result of the simulation. Five standards already make the
self-calibration possible, although seven were used in [15].

Very good results were achieved using only four calibration
measurements in [11]. This is possible if additional assump-
tions concerning the reciprocity or symmetry of the error
network are made, or if at least one of the leakage paths can
be neglected (or assumed known). An iterative procedure finds
a solution, although the 15 equations are not independent. In
practice, this is the same as assuming an arbitrary value to one
or more of the unknowns. There is, however, no guarantee that
the solution is close to the correct one because the number of
possible solutions is infinite.

A sufficient number of independent equations is achieved
using thru (T) and/or delay line (D, L) with different combina-
tions of match (M), short (S), or open (O). For example, M–M
means matched loads at both ports 1 and 2 simultaneously.

A natural choice for five two-port calibration standards
would be pairs M–M, S–S, and O–O, in addition to the thru
and the delay line. However, this combination of standards
does not allow the determination of the error parameters. The
nonsingular combinations verified by careful simulations are
listed in Table I. Note, that S and O can be interchanged and T
or M–M can always be replaced by L (D). Of course, the left
and right ports can also be interchanged. In [12], there were six
essentially redundant combinations, which have been omitted
here. Complete listings of the 156 different combinations
including all the dual cases are shown in [24].

The error parameters can be solved from linear equations
produced by (21). A good way is to use (21a)–(21d) for the first
and the second standard, (21a)–(21c) for the third standard, and
(21b)–(21c) for the two remaining standards. These equations
always give a solution for the combinations mentioned above.
Yet, the solution is not necessarily always optimal where error
sensitivity is concerned.

Five two-port calibration measurements may sound imprac-
tical, but taking into account the speed of modern network
analyzers it should be no problem. The availability of standards
is also usually not a bottleneck, because the same standards
are already used in short-open-load-thru (SOLT), line-reflect-
line (LRL), and LMR methods. However, two similar one-port
standards are needed with many (not all) of the procedures
above. Self-calibration procedures usually assume identical
reflection-standards on either side. Sexed connectors may
cause problems when the same type of standard has to be
connected to both analyzer ports, whether it is done simultane-
ously or not. Wafer prober measurements may, in this respect,
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TABLE I
NONSINGULAR COMBINATIONS OF FIVE TWO-PORT CALIBRATION STANDARDS IN

CONJUNCTION WITH THE16-TERM ERRORMODEL. T=THRU, M=MATCH. S=SHORT,

O=OPEN ORVICE VERSA.T OR M-M CAN BE REPLACED BY L=LINE (=D=DELAY)

be easier to accomplish than calibration at the coaxial ports
(if sexed). In general, the one-port standard at port 1 does not
have to be identical to the same type of standard (short, open,
or match) at port 2, if the standards are exactly known. It
is, however, expected that several self-calibration procedures
are feasible using the standard combinations in Table I. The
combination Nr. 14 is already used in [16] as a self-calibration
procedure. Another one will follow in the next section.

III. SELF-CALIBRATION PROCEDURELMR 16

The following procedure allows 16-term calibration using
standards T, M–M, R–M, R–R, and M–R (Nr. 19 in Table I). T
means a thru or a delay (line), M is an ideal match, and R is an
unknown reflection standard (typically nonideal or ideal short
or open). Measuring the standards in this order necessitates
only six connections in the sense of [15] in comparison with
seven and five connections needed with the 12-term thru-
reflect-line (TRL) or TMR, respectively. In this case it is not
possible to replace M–M with a delay line.

Five two-port measurements are made with the standards
, , , , and , each representing-parameters in

Fig. 1. The measurement data corresponding toare ,
, , , and , respectively. Assuming an ideal

match, -parameters of the standards will be

thru or delay (44)

match–match (45)

reflect–reflect (46)

reflect–match (47)

match–reflect (48)

where and are the physical length and the
propagation constant of the line. For a zero-length thru .
Because the leakage affects the measurement, the one-port
standards have to be simultaneously connected to the analyzer
ports in measurements, , , and . If no leakage paths
are present, standards and are redundant. The same data
is included in and .

In the course of the calibration, the value of the reflection
coefficient can be found from a second-order equation as
in the eight-term LMR method. In fact, the unknown is
so that can be calculated if is known or vice versa. Of
course, neither nor is allowed to be equal to zero. The
resulting equations are surprisingly simple, partly because of
the excessive use of the match as a standard.

To improve readability, the resulting equations are shown
first. The derivation of the method is outlined in the Appendix.

Matrices , , , , and are based on the measurement
data and defined by

(49)

(50)

(51)

(52)

(53)

Coefficients , , , and are functions of the elements
of the matrices

(54)

(55)

(56)

(57)

As mentioned earlier, is used as a scaling parameter and
is assumed to be equal to one. Either or has to be
calculated from a second-order equation

(58)

(59)

(60)

(61)
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Fig. 3. An artificial leaky VNA.

(62)

The problem of root choice is solved as usual—the reflection
coefficient is approximately known (e.g.,1 or 1) or the
delay-line length is known with an accuracy of better than

( wavelength). The root can possibly be chosen
based on the fact that with port-to-port
symmetrical test fixtures or wafer-probing stations in two-tier
calibration [6].

The remaining error terms can be easily calculated as
follows:

(63)

(64)

(65)

(66)

(67)

(68)

(69)

(70)

(71)

(72)

(73)

(74)

Additionally, the source- and load-match correction can be
used during the measurements.

IV. PRACTICAL MEASUREMENTS

The measurement network shown in Fig. 3 was used to test
the new algorithm in practice. The configuration can already be
considered a de facto standard being used by several authors
[11], [13], [15].

A weak leakage path was produced connecting a 20-dB
attenuator between the third ports of two Wilkinson power
dividers (center frequency 1.4 GHz). The connector type
used was SMA. The LMR-16 calibration was performed with
male and female shielded opens as (identical) reflection
standards and fixed loads as match standards. Measurements
revealed differences between the two reflection standards due
to connector wear. The source and load match correction was
not used.

Fig. 4. S12 of a delay line. Curve 1: LMR 16 with the leaky network
analyzer. Curve 2: Direct measurement with HP8510C.

Fig. 5. Isolation measurement with shorts connected to the leaky VNA ports.
Curve 1: LMR 16 with the leaky network analyzer. Curve 2:S21 seen by the
calibrated HP8510C when the leaky VNA with shorts was measured.

As an example, of a delay line is shown in Fig. 4. The
results of the new LMR-16 calibration method are compared
with the direct HP8510C network analyzer measurement (51
frequency points, 12-term SOLT).

To illustrate that the new procedure is able to handle
the leakage, isolation measurements were done with short
circuits at the measurement ports. Fig. 5 compares the 16-term
corrected results to the isolation seen by the network analyzer.
It is important that calibration standards are not used any more
as test objects when the accuracy of the calibration is checked.
As a result, one would get the originally assumed-parameters
of the calibration standards. When measuring the isolation of
the termination pairs M–M, O–O, O–M, and M–O (which
were used in calibration), nearly ideal values were achieved
as expected.

The measurement accuracy can still be enhanced by us-
ing identical reflection standards at both ports. In numerical
simulations, no roundoff or systematical errors were found. A
normal nonleaky network analyzer alone can also be calibrated
with the method. As an extreme special case, the algorithm
also works with totally ideal error networks, i.e., the calibration
standards are measured with a calibrated network analyzer.
In such a case, the error networks reduce to two matched
zero-length lines with no interconnection.
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V. CONCLUSION

A new class of calibration procedures especially suitable for
network analyzers and wafer probes is introduced. The proce-
dures rely on five two-port calibration measurements, which is
the minimum number needed for full determination of the error
coefficients with the 16-term error model. Possible combina-
tions of thru, delay, match, short, and open are tabulated. The
theory of the 16-term error model, including the calibration
and de-embedding equations, is outlined. The restrictions of
the 16-term methods published in earlier literature are defined.
Equations for the LMR 16 self-calibration procedure are given.
The usability of the algorithm is shown through measurement
examples.

APPENDIX

The derivation of the self-calibration procedure is given here
in detail. Only the most common matrix operations are needed.
No advantage was found when formulating the problem with
Kronecker products [18], which in this case lead to 44
matrices. On the contrary, not bigger than 22 matrices
have to be inverted with the present method.

Unity matrix and matrices , , , , and (cf.
north–west) are denoted as follows:

(A1)

(A2)

(A3)

-parameters of the calibration standards

thru or delay (A4)

match–match (A5)

reflect–reflect (A6)

reflect–match (A7)

match–reflect (A8)

The following five matrix equations are written using (19):

(A9)

(A10)

(A11)

(A12)

(A13)

By eliminating

we get the following equations for :

(A14)

(A15)

(A16)

(A17)

Finally, eliminating

(A18)

(A19)

(A20)

Substituting the standards’ -matrices into the previous
equations

(A21)

(A22)

(A23)

Next, (A22) and (A23) are multiplied by , which after
some manipulation yields

(A24)

(A25)

(A26)

It is preferable to solve as a function of and not vice
versa to maintain the analogy to the TCX algorithm. Yet the
inverse of the matrix ( ) does not always exist. To
overcome this problem a strange approach is used.
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By multiplying (A24) first by and then by , both
from the right-hand side (RHS), and noting that
and , one gets

(A27)

(A28)

After solving and from (A25) and (A26)

(A29)

(A30)

and combining with (A27) and (A28)

(A31)

(A32)

Using a more compact notation for (A31)–(A32)

(A33)

(A34)

, , and are defined in (49)–(53). contains three
unknown error terms, if is set, equal to one of the
following:

(A35)

Both (A33) and (A34) give four equations for the unknown
error terms

(A36)

(A37)

(A38)

(A39)

(A40)

(A41)

(A42)

(A43)

One of the error terms can already be solved using
(A43). Expressing as a function of from (A36) and
substituting into (A39)–(A40)

(A44)

(A45)

(A46)

(A47)

Error term and ratio can be solved simultaneously
from (A46) and (A47). Once is determined, can be
found from (A29) to (A30)

and are defined in (49)–(53). With the calibration
standards defined above, (A15) and (A10) will reduce to

The eight remaining error terms can then finally be solved.
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